Real-Time Anomaly Detection Based on a Fast Recursive Kernel RX Algorithm
نویسندگان
چکیده
Real-time anomaly detection has received wide attention in remote sensing image processing because many moving targets must be detected on a timely basis. A widely-used anomaly detection algorithm is the Reed-Xiaoli (RX) algorithm that was proposed by Reed and Yu. The kernel RX algorithm proposed by Kwon and Nasrabadi is a nonlinear version of the RX algorithm and outperforms the RX algorithm in terms of detection accuracy. However, the kernel RX algorithm is computationally more expensive. This paper presents a novel real-time anomaly detection framework based on the kernel RX algorithm. In the kernel RX detector, the inverse covariance matrix and the estimated mean of the background data in the kernel space are non-causal and computationally inefficient. In this work, a local causal sliding array window is used to ensure the causality of the detection system. Using the matrix inversion lemma and the Woodbury matrix identity, both the inverse covariance matrix and estimated mean can be recursively derived without extensive repetitive calculations, and, therefore, the real-time kernel RX detector can be implemented and processed pixel-by-pixel in real time. To substantiate its effectiveness and utility in real-time anomaly detection, real hyperspectral data sets are utilized for experiments.
منابع مشابه
Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملRecursive Local Summation of RX Detection for Hyperspectral Image Using Sliding Windows
Anomaly detection has received considerable interest for hyperspectral data exploitation due to its high spectral resolution. Fast processing and good detection performance are practically significant in real world problems. Aiming at these requirements, this paper develops a recursive local summation RX anomaly detection approach by virtue of sliding windows. This paper develops a recursive lo...
متن کاملFast Anomaly Detection Algorithms For Hyperspectral Images
Hyperspectral images have been used in anomaly and change detection applications such as search and rescue operations where it is critical to have fast detection. However, conventional Reed-Xiaoli (RX) algorithm [6] took about 600 seconds using a PC to finish the processing of an 800x1024 hyperspectral image with 10 bands. This is not acceptable for real-time applications. A more recent algorit...
متن کاملNonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016